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Problem 1: LQR



Linear Quadratic Regulator (LQR):
Quadratic Objective:

Linear Dynamics:

LQR Intro

General Discrete Finite Time:
Objective:

Dynamics:

Above equations taken from Prof. Changliu Liu’s course: Adaptive Controls and Reinforcement Learning 16-899 

“Regulator”: generate controls to 
minimize a cost function



Problem 1: LQR

Consider continuous-time for HW:

Let’s look at an example double integrator:

Non-zero setpoint:
Define a new coordinate system to drive to 0

LQR solves for optimal control in this modified 
coordinate system when we use “u = -K(x - x*)”. 
Note for fixed A and B:

We then apply this control to our original system. 
Overall, the dynamics do not change. We simply 
changed the coordinate system. 

https://colab.research.google.com/drive/1ahuKwuDxYNxDfF2ypIK3lrypahMVfXXo?usp=sharing


Problem 1: LQR

Nonlinear dynamics in arm_env.py:

https://docs.google.com/file/d/1oO7BbmgxbeF2m8TW311Lc0yCEtF5f3d0/preview
https://docs.google.com/file/d/1oO7BbmgxbeF2m8TW311Lc0yCEtF5f3d0/preview


Problem 1: LQR

What do we need to do?
Linearize the nonlinear dynamics at each step:

We can directly apply this approximated A and B to LQR! Solving for optimal control at the current point, A 
and B only valid around this point! More details in piazza post @350, or come up to ask afterwards.

Now, how do we approximate the Jacobians? 



Problem 1: LQR

Central Differences, approx derivative:

Jacobian:

In this problem (similar logic for B):

(4 x 4)

f(x, u) = simulate_dynamics(env, x, u)

But how to calculate partial derivative with respect to only 
one variable in input?... 



Problem 2: PETS



Probabilistic Models

● One way to train a model: directly predict the next state, then minimize MSE

● Probabilistic model: predict the parameters of a distribution for the next state!
○ Usually mean and log-variance for continuous-space models
○ Maximize log-probability of the next state



MPC vs open-loop control

● Open-loop: plan once all the way to the end of the episode, then execute all 
of the actions without looking at the subsequent states

○ Very fast, but fails if predictions are wrong
● Model-predictive control (MPC): make plan, then execute the first action in 

the plan. Replan starting from the next state
○ Can handle (small) errors in the model, but is computationally expensive 



CEM vs random sampling for planning  

● How do we actually come up with a plan that looks good?
● Random sampling: 

○ Sample N trajectories, starting from the current state, using your model to generate transitions
○ Pick the one with the highest cumulative reward (or lowest cost)!

● CEM: 
○ Sample N trajectories, starting from the current state, using your model to generate transitions
○ Take the elites and fit a mean and diagonal covariance matrix to the elites
○ Use this action distribution to sample N trajectories again
○ Do this K times. 



PETS recap
● Very similar to MPC with CEM, but with several twists: 
● Train an ensemble of probabilistic models 

○ Each network in the ensemble starts from a different initialization
○ Train each network with its own minibatch from the replay buffer

● Transitions sampled from the model have two sources of stochasticity: 
○ Choosing a random network from the model ensemble captures epistemic uncertainty (not 

enough data to be certain about transition)

○ Sampling a transition from the distribution that the network outputs
■ Captures aleatoric uncertainty (environment is fundamentally stochastic)



Tips for vectorized indexing 

● Let’s say we have a Nx2 tensor, and we want to get a Nx1 tensor by indexing 
with a Nx1 index tensor (each entry is either 0 or 1). Best way to do this?

● Pictorially:

Source tensor
2

N

Indices 

N

1
Result



Tips for vectorized indexing

Approach #1 (naive): for loop 

Approach #2: vectorized


