Recitation 9: Homework 4
Review

Alex Li, Alvin Shek

Problem 1: LQR

LQR Intro

General Discrete Finite Time:
Objective:

N—
A== lk a:k,uk)+lN TN)
k=0

._n

Dynamics:

Bp1 = @k, vg)

—

“Regulator”: generate controls to

minimize a cost function

Linear Quadratic Requlator (LQR):

Quadratic Objective:
N-1
i = (2} Qrar + uf Ryug] + x5 Snxy
k=0

Linear Dynamics:

Thyl1 = Axy, + Buy

@Qo,: o+ QN-1 Sn symmetric positive semi-definite
Rozessy: Ry symmetric positive definite
Ay, By controllable

Above equations taken from Prof. Changliu Liu’s course: Adaptive Controls and Reinforcement Learning 16-899

Problem 1 LQR Non-zero setpoint:

Define a new coordinate system to drive to 0
_ ok
Consider continuous-time for HW: =T
J= % / [T Qx + u” Ru)dt
t

Jt=0

|
=

I
o

= Aw+-Bi

=
Let’s look at an example double integrator: &=

A(Z — z*) + Bu

. xT 0 1 T 0 LQR solves for optimal control in this modified
<=1z =10 o []+ (5]

coordinate system when we use “u = -K(x - x*)”.
z 0 0 z Note for fixed A and B:

1 0 # Independent of the current state x or goal x*!
Q = R = [1] S = linalg.solve continuous are(A, B, Q, R)
0]. K = linalg.inv(R) @ B.T @ S
We then apply this control to our original system.

Overall, the dynamics do not change. We simply
changed the coordinate system.

https://colab.research.google.com/drive/1ahuKwuDxYNxDfF2ypIK3lrypahMVfXXo?usp=sharing

Problem 1: LQR

Nonlinear dynamics in arm_env.py:

https://docs.google.com/file/d/1oO7BbmgxbeF2m8TW311Lc0yCEtF5f3d0/preview
https://docs.google.com/file/d/1oO7BbmgxbeF2m8TW311Lc0yCEtF5f3d0/preview

Problem 1: LQR

What do we need to do?
Linearize the nonlinear dynamics at each step:

We can directly apply this approximated A and B to LQR! Solving for optimal control at the current point, A
and B only valid around this point! More details in piazza post @350, or come up to ask afterwards.

Now, how do we approximate the Jacobians? -D:c f -Du f

Problem 1: LQR

In this problem (similar logic for B):

[0 Of Ofi Oh]
. [9f 0f of; 7 Z1 T2 T3 T4
Jacobian: Tz om of, 0fy 0fy Ofy
7 Al T T3 T4
% A=D,f= of, Ofy, Ofy Ofy
' = @ @
: ofs Ofs Ofs Ofu
of, of, L T1 T2 z3 T4
L T1 Ty (4 X 4)

f(x, u) = simulate _dynamics(env, x, u)

But how to calculate partial derivative with respect to only
one variable in input?...

Problem 2: PETS

Probabilistic Models

e One way to train a model: directly predict the next state, then minimize MSE

A

S, \%— S”

S, a

e Probabilistic model: predict the parameters of a distribution for the next state!

o Usually mean and log-variance for continuous-space models
o Maximize log-probability of the next state

: f',m ' ':> p(st-l-l)
Clielie
’d._x';‘

g A‘:,
~:‘_}——’.‘

(8¢, ay) mm

N
lOSSGauss(o) ZZ [,U‘O (snaan) _3n+1]T29_1 (Snaan) [He(snaan) _3n+1] +10g det Ze(sn,an)

n=1

MPC vs open-loop control

e Open-loop: plan once all the way to the end of the episode, then execute all

of the actions without looking at the subsequent states
o \Very fast, but fails if predictions are wrong
e Model-predictive control (MPC): make plan, then execute the first action in

the plan. Replan starting from the next state
o Can handle (small) errors in the model, but is computationally expensive

W
"
4%

0.0 25 5.0 75 10.0 125 15.0 175 200
Timestep (T)

CEM vs random sampling for planning

e How do we actually come up with a plan that looks good?
e Random sampling:

o Sample N trajectories, starting from the current state, using your model to generate transitions
o Pick the one with the highest cumulative reward (or lowest cost)!

o CEM:

o Sample N trajectories, starting from the current state, using your model to generate transitions
o Take the elites and fit a mean and diagonal covariance matrix to the elites

o Use this action distribution to sample N trajectories again

o Do this K times.

PETS recap

e Very similar to MPC with CEM, but with several twists:
e Train an ensemble of probabilistic models
o Each network in the ensemble starts from a different initialization
o Train each network with its own minibatch from the replay buffer
e Transitions sampled from the model have two sources of stochasticity:
o Choosing a random network from the model ensemble captures epistemic uncertainty (not
enough data to be certain about transition)

sl

(s,a)

o Sampling a transition from the distribution that the network outputs
m Captures aleatoric uncertainty (environment is fundamentally stochastic)

Tips for vectorized indexing

e Let's say we have a Nx2 tensor, and we want to get a Nx1 tensor by indexing
with a Nx1 index tensor (each entry is either O or 1). Best way to do this?
e Pictorially:

_O- I

0

1

0 —> N.

1

0 ||
2 o 1

Source tensor Indices Result

Tips for vectorized indexing

1 x = torch.arange(32768).reshape(1024, 2, 16)
2 1idx = np.random.choice(x.shape[l], size=x.shape[0])

Approach #1 (naive): for loop

$%time

result = []

for i in range(x.shape[0]):
result.append(x[i, idx[i],:])

= W N =

CPU times: user 7.64 ms, sys: 135 us, total: 7.77 ms
Wall time: 7.72 ms

Approach #2: vectorized

1 %%time
2 result = x[np.arange(x.shape[0]), idx,:]

CPU times: user 812 us, sys: 510 us, total: 1.32 ms
Wall time: 762 us

